

A digitizer for on-site power and energy measurements

Paul Wright, Paul Clarkson and Pravin Patel

- Portable should run on batteries, rugged.
- Isolated No copper connections for HV safety
- 6 channels 3 phase V & I
- Sampling trigger by external clock (optical fibre)
- Fast sampling for flicker (72 kHz)
- Environmental conditions of site temperature range.
- Continuous real-time data collection
- 10 ppm accuracy (linearity, stability etc.)

- Commercial systems looked generally very good but:
 - Difficulties finding a externally triggered ADC.
 - Questions over suitability for field environment.
 - Suitability for high level language programming
 - Real time processing
 - Desire to understand the working of the instrument.
 - Customization.

A quick solution

ANALOG Evaluation Board for 24-Bit,8.5mW,109dB, DEVICES 128/64/32kSPs ADC 128/64/32kSPs ADC

Preliminary Technical Data

FEATURES

Full-featured evaluation board for the: AD7767 AD7767-1 AD7767-2 CED compatible Standalone capability On-board analog buffering and voltage reference Various linking options PC software for control and data analysis when used with the EVAL-CED1Z **Unearity Evaluation**

GENERAL DESCRIPTION

This data sheet describes the evaluation board for the, AD7767,

EVAL-AD7767/67-1/67-2EDZ and AD7767-2 versions digitally filter more rigorously, meaning

that greater noise performance is achieved, trading off on output data rate.

All the AD7767 devices (AD7767, AD7767-1, AD7767-2) offer 18-bit lincarity (3ppm).

Full details on the versions of the AD7767 are available in the AD7767 data sheet, which is available from Analog Devices, Inc., and should be consulted in conjunction with this data sheet when using the evaluation board.

ON-BOARD COMPONENTS INCLUDE:

ADR445, 5 V ultrahigh precision hand gap reference Two ADA4841-1 operational amplifiers (Run from 7.5V and -2.5V external supplies). Various MCLK options

ANALOG

Converter Evaluation and Development (CED) Board

Preliminary Technical Data

FEATURES

interfaces to multiple serial and parallel precision converter

evaluation boards Supports high-speed LVDS interface 32MB SDRAM AME SEAM USB 2.0 connection to PC

User reprogrammable Altera Cyclone FPGA Provides 8 separate power supplies Connects directly to Blackfin Ez-Kit

APPLICATIONS

Evaluating Precision Converters Creation of demonstration systems Prototyping of end-user systems

GENERAL DESCRIPTION

The CEDI board is part of a next generation platform from Analog Devices Inc., intended for use in evaluation demonstration and development of systems using Analog Devices precision converters. It provides the necessary communications between the converter and the PC, programming or controlling the device, transmitting or receiving data over a USB link.

EVAL-CED1Z

PACKAGE CONTENTS

- CED Board
- USB A to Mini-B cable
- 7 Volt 15W Power Supply

Analog devices have some excellent ADC ICs

Very nice – but.....

- Only one channel
- Not isolated
- Uni-polar input
- Power supplies need improvement
- Samples stored to SRAM and downloaded later using USB (limits capture length)
- No anti-aliasing filters

However...

- The ADC is Fast -100kS/s
- It should be good enough for 10ppm
- It is a sampling ADC (an external clock)

Isolated – Real time Data: Another Evaluation Card..

EZ-KIT Lite for Analog Devices ADSP-BF537 Blackfin Processor

Key Features

- ADSP-BF537 Blackfin Processor
- · Max core clock rate 600 MHz
- 64 MB (32M × 16) SDRAM
- 4 MB (2M × 16) flash memory
- SMSC LAN83C185 10/100 PHY with RJ45 connector
- CAN TJA1041 transceiver with two modular connectors
- AD1871 96 kHz stereo DAC with 3.5 mm jack connector
- AD1854 96 kHz stereo ADC with 3.5 mm jack connector
- RS-232 UART line driver/receiver

Ethernet Can be wireless!

Parallel Port to FPGA for data transfer and to boot FPGA

(\$350)

Approx 700 euro + 1MM

- The ADCs can be "daisy chained" to provide multiple channels with one DSP
- Bi-polar operation and anti-aliasing electronics designed
- Optical fibre sampling clock required
- Digital / analogue isolation required
- Isolated power supplies floating channels.

Design and build a PCB for each analogue channel

24 Bit ADC Eurocard – One channel

Backplane

Digitizer System Block Diagram

----- lines indicate opto isolation

DSP PCB with FPGA PCB below

dc-dc isolators

ADC Clock PCB with Fibre Optics

24 Bit ADC Eurocard Plug-in Modules (6 Channels)

It is possible to log the following continuously to disk at rates up to once per cycle:

- 6 channels of V & I: rms, fundamental, dc, phase angle.
- Single/three phase Watts, VA, VAR, PF
- Fundamental symmetrical components.
- Harmonics with interharmonic sweep (IEC61000-4-7)
- Flicker using NPL standard flicker meter.
- Dips and Swells as IEC61000-4-30.
- Temperature (3 probes).

6 Channels - 32kHz sampling rate - 6.144MBits/second

Real-time PC Software collects data over Ethernet processes, stores and displays.

SmartPQ			
Eile ADC Measurement Help			
Unit D 🔄 🛃 🔌 🔕 🕲 🧐 Quick Configure 🗄 Repeat Wait (s) 1	Asynchronous sampling		
: Channels 6 V : Samples 512 Blocks 10 Clock kHz 819.2 Cvcl	es Per Block 1 🗄 Est. Frequency 👘 Trim G D		
E02 Channel 0 Three Phase Wattmeter			
AC 0.493101 Filter 0.6 Mean -0.000141 Transducer 0.4 Fundamental 0.492794 0.0 Range -0.4 Distortion 0.035293 4407 • 0.6 0 100 200 300 400 500	Three Phase Power Watts -0.059198 VA 0.494100 VARS 0.489401 PF -0.119809 I Neutral 1.000368		
Ch 1 Flicker Results			
Disable CPF plot Class number -68,400 -68,300 -68,200 -68,100 -68,000 -67,900 -67,800 100 90 80 Class number -68,400 -68,300 -68,200 -68,100 -67,900 -67,800 Class number -68,400 -68,300 -68,200 -68,100 -68,000 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,100 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -68,100 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -68,200 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -68,200 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -68,200 -67,900 -67,800 Class number -69,600 -68,200 -68,200 -68,200 -68,200 -67,800 -69,600 -68,200 -68,200 -68,200 -68,200 -67,900 -67,800 -69,600 -68,200 -68,			
	Channel A (VCh0+ICh1) Channel B (VCh2+ICh3) Channel C (VCh4+ICh5) Watts -0.059201 Watts 0.000003 Watts 0.0000000		
0.000175 0.00018 0.000185 0.00019 Exceeded flicker perceptibility	VA 0.493281 VA 0.000819 VA 0.000000 VAPS 0.400405 0.000001 VAPS 0.000000		
Disable results output	Phase 1 601196 Phase 1 222226 Phase 0 011225		
Test Time Pst Pmax Plt P0.1 P0.7 P1s P1.5 P2.2			
2 09:49:56 0.009672 0.000191 0.009669 0.000187 0.000186 0.000185 0.000 ✓ ✓ <td< th=""><th>Lag/Lead Lag Collins C</th></td<>	Lag/Lead Lag Collins C		

Some Results

1 in 10-7 noise floor as in data sheet.

Six digitizer channels (offset for clarity) drift over 15 hours at 1V, 40Hz. Trend lines shown on each.

DC Linearity

dc Linearity of 5 Channels (vs. un-calibrated Fluke 5700A)

- Un-buffered Input Impedance at 50Hz = 7.5M ohm
- With buffer retrofit = 10^{13} ohm, 1pF.

AC Linearity

Temperature Coefficient

Uncertainties

RMS Voltage Lab Measurment at 50Hz

Contribution	Notes	Uncertainty µ₩V
AC Calibration	Contributions of a calibration against AC/DC Transfer device (4920)	6
Gain Drift	Calibrated in past 10 hours	1
Noise	Variation in AC Values	6
Linearity	10% to 100% of 1∨ RMS range	1
Temperature	Controlled to ± 1 oC	2
Total k=1		9
Phase	Between two channels at 50Hz	1 µ radian

Field based Measurement at 50 Hz (not including transducer)

AC Calibration	As above calibrated before leaving	6
	laboratory	
Gain Drift	40 daγ	6
Noise	Variation in AC Values	6
Linearity	10% to 100% of 1∨ RMS range	1
Temperature	Un-Controlled ± 20 oC from cal	40
	temperature	
Total k=1		41

Additional Work Beyond WP2 Deliverable for On-site PQ Use

- Real time PQ Software
- Voltage Input Amplifier Retrofit (440V,220V,110V,63.5V,20V,10V,1V computer selectable ranges).
- Rogowski Coil Integrator Amplifier Retrofit (10kA,1kA,100A,10A computer selectable ranges)
- GSM/3G Data Communications.
- Temperature logging and GPS channel.
- Over current and overvoltage Protection boxes.
- Winter heater & temperature controller.

Target Date: Ready for Smart Grid PQ Monitoring September 2011.

